Filecoin Docs
BasicsStorage providersNodesNetworksSmart contractsReference
  • Welcome to Filecoin Docs
  • Basics
    • What is Filecoin
      • Crypto-economics
      • Blockchain
      • Storage model
      • Storage market
      • Retrieval market
      • Programming on Filecoin
      • Networks
    • The blockchain
      • Actors
      • Addresses
      • Blocks and tipsets
      • Consensus
      • Drand
      • Proofs
    • Assets
      • The FIL token
      • Wallets
      • Metamask setup
      • Get FIL
      • Transfer FIL
    • Interplanetary consensus
    • How storage works
      • Filecoin plus
      • Storage onramps
      • Filecoin and IPFS
    • How retrieval works
      • Basic retrieval
      • Serving retrievals
      • Saturn
    • Project and community
      • Forums and FIPs
      • Filecoin compared to
      • Filecoin FAQs
      • Related projects
      • Social media
      • The Filecoin project
      • Ways to contribute
  • Storage providers
    • Basics
      • Quickstart guide
    • Filecoin economics
      • Storage proving
      • FIL collateral
      • Block rewards
      • Slashing
      • Committed capacity
    • Filecoin deals
      • Storage deals
      • Verified deals
      • Filecoin programs and tools
      • Snap deals
      • Charging for data
      • Auxiliary services
      • Return-on-investment
    • Architecture
      • Software components
      • Storage provider automation
      • Sealing pipeline
      • Sealing rate
      • Sealing-as-a-service
      • Network indexer
    • Infrastructure
      • Storage
      • Network
      • Backup and disaster recovery
      • Reference architectures
    • Skills
      • Linux
      • Network
      • Security
      • Storage
      • Sales
      • Industry
    • PDP
      • Prerequisites
      • Install & Run Lotus
      • Install & Run YugabyteDB
      • Install & Run Curio
      • Enable PDP
      • Use PDP
  • Nodes
    • Implementations
      • Lotus
      • Venus
    • Full-nodes
      • Pre-requisites
      • Basic setup
      • Node providers
    • Lite-nodes
      • Spin up a lite-node
  • Smart contracts
    • Fundamentals
      • The Filecoin Virtual Machine
      • Filecoin EVM runtime
      • ERC-20 quickstart
      • Roadmap
      • Support
      • FAQs
    • Filecoin EVM-runtime
      • Actor types
      • Address types
      • FILForwarder
      • Difference with Ethereum
      • How gas works
      • Precompiles
    • Programmatic storage
      • Aggregated deal-making
      • Direct deal-making
      • Cross-Chain Data Bridge(CCDB)
      • Data replication, renewal and repair (RaaS)
      • RaaS interfaces
    • Developing contracts
      • Get test tokens
      • Remix
      • Hardhat
      • Foundry
      • Solidity libraries
      • Call built-in actors
      • Filecoin.sol
      • Direct deal-making with Client contract
      • Using RaaS
      • Verify a contract
      • Best practices
    • Advanced
      • Wrapped FIL
      • Oracles
      • Multicall
      • Multisig
      • FEVM Indexers
      • Cross-chain bridges
      • Aggregated deal-making
      • Contract automation
      • Relay
  • Networks
    • Mainnet
      • Explorers
      • RPCs
      • Network performance
    • Calibration
      • Explorers
      • RPCs
    • Local testnet
      • Get test tokens
    • Deprecated networks
  • Reference
    • General
      • Glossary
      • Specifications
      • Tools
    • Exchanges
      • Exchange integration
    • Built-in actors
      • Protocol API
      • Filecoin.sol
    • JSON-RPC
      • Auth
      • Chain
      • Client
      • Create
      • Eth
      • Gas
      • I
      • Log
      • Market
      • Miner
      • Mpool
      • Msig
      • Net
      • Node
      • Paych
      • Raft
      • Start
      • State
      • Sync
      • Wallet
      • Web3
  • Builder Cookbook
    • Overview
    • Table of Contents
    • Data Storage
      • Store Data
      • Retrieve Data
      • Privacy & Access Control
    • dApps
      • Chain-Data Query
      • Oracles
      • Cross-Chain Bridges
      • Decentralized Database
Powered by GitBook
LogoLogo

Basics

  • Overview
  • Crypto-economics
  • Storage model
  • Reference

Developers

  • The FVM
  • EVM-runtime
  • Quickstart
  • Transfer FIL

Contact

  • GitHub
  • Slack
  • Twitter
On this page
  • How the indexer works
  • IPNI and storage providers

Was this helpful?

Edit on GitHub
Export as PDF
  1. Storage providers
  2. Architecture

Network indexer

InterPlanetary Network Indexer (IPNI) enables users to search for content-addressable data available from storage providers. This page discusses the implications of IPNI for storage providers.

PreviousSealing-as-a-serviceNextInfrastructure

Last updated 6 months ago

Was this helpful?

A network indexer, also referred to as an indexer node or indexer, is a node that maps content identifiers (CIDs) to records of who has the data and how to retrieve that data. These records are called provider data records. Indexers are built to scale in environments with massive amounts of data, like the Filecoin network, and are also used by the IPFS network to locate data. Because the Filecoin network stores so much data, clients can’t perform efficient retrieval without proper indexing. Indexer nodes work like a specialized key-value store for efficient retrieval of content-addressed data.

There are two groups of users within the network indexer process:

  • Storage providers advertise their available content by storing data in the indexer. This process is handled by the indexer’s ingest logic.

  • Retrieval clients query the indexer to determine which storage providers have the content and what protocol to use, such as Graphsync, Bitswap, etc. This process is handled by the indexer’s find logic.

How the indexer works

This diagram summarizes the different actors in the indexer ecosystem and how they interact with each other. In this context, these actors are not the same as .

IPNI and storage providers

Storage providers publish data to indexers so that clients can find that data using the CID or multihash of the content. When a client queries the indexer using a CID or multihash, the indexer then responds to the client with the provider data record, which tells the client where and how the content can be retrieved.

As a storage provider, you will need to run an indexer in your setup so that your clients know where and how to retrieve data. For more information on how to create an index provider, see the .

IPNI documentation
Was this page helpful?
smart-contract actors
For more info on how the indexer works, read the .
Filecoin blog post